New Approaches to Treatment of Gastrointestinal Stromal Tumor

Margaret von Mehren, MD Director Sarcoma Oncology Associate Director for Clinical Research

Professor of Medical Oncology

Outline

- The GIST Basics
- Approved treatments
- New approaches

THE GIST BASICS

Mazur and Clark, 1983

Coined the term **Gastrointestinal stromal tumors**

Some **smooth muscle tumors of the GI tract** "expressed **neural crest antigens** such as S-100 protein and neuron-specific enolase"

GIST

Most common GI sarcoma

- Arises from Interstitial cell of Cajal or precursor cell
- 0.2% of all GI tumors, but 80% of GI sarcomas
- Can arise anywhere along GI tract (stomach>small intestine>others)
- Most commonly diagnosed in the 40-60 year age group
 - Similar male/female incidence, although some reports suggest a slightly higher incidence in men
- GIST have an incidence of 14.5 per million annually and a prevalence of 129 per million

Fletcher et al. Hum Pathol. 33:459; 2002. Jemal et al. CA Cancer J Clin. 55:10, 2005. Joensuu et al. Lancet Oncol. 3:655, 2002. Miettinen et al. Pol J Pathol. 54:3, 2003. Nilsson et al. Cancer.103:821, 2005.

Time to Progression on Chemotherapy

Survival correlates with Resection Status

Primary tumor, completely resected	96 months
Primary tumor, incompletely resected	26 months
Recurrent disease, completely resected	49 months
Recurrent disease, incompletely resected	8 months
Metastatic disease, completely resected	39 months
Metastatic disease, incompletely resected	11 months

Gain-of-Function Mutations of c-kit in Human Gastrointestinal Stromal Tumors

Seiichi Hirota,* Koji Isozaki,* Yasuhiro Moriyama, Koji Hashimoto, Toshirou Nishida, Shingo Ishiguro, Kiyoshi Kawano, Masato Hanada, Akihiko Kurata, Masashi Takeda, Ghulam Muhammad Tunio, Yuji Matsuzawa, Yuzuru Kanakura, Yasuhisa Shinomura, Yukihiko Kitamura†

- 5 of 6 GIST had mutations in KIT gene
- Mutant forms of KIT are constitutively active
- Proposed that GIST may originate from ICCs
 Studies in knock-in mice with KIT mutations
- - Demonstrated that constitutive KIT signaling is sufficient to induce GIST
 - Parallel with the pathology seen with familial KIT mutations, eg. mastocytosis

Frequency of Mutation in *KIT* and *PDGFRA*

Tarn & Godwin, *Curr Treat Options Oncol*, 2005

Ligand-dependent Activation of Wild-type KIT

Ligand-independent Activation of Mutant KIT

APPROVED AGENTS

Drug Approval Time Line

Imatinib mesylate (STI-571, Gleevec)

Identified in a screen for tyrosine kinase inhibitors Synthesized compound was optimized for inhibition for specific kinases Competitively inhibits the ATP-binding site of the enzyme and leads to inhibition of phosphorylation of down stream signals Has activity against KIT and **PDGFRA** mutations

Ligand-independent Activation of Mutant KIT

Figure 2. PET Studies with [18F]Fluorodeoxyglucose as the Tracer.

Before STI571 therapy (Panel A), there were multiple metastases in the liver and upper abdomen. There was also marked retention of [18F]fluorodeoxyglucose in the right renal pelvis and ureter, a finding indicative of hydronephrosis. After four weeks of treatment (Panel B), there was no abnormal uptake of tracer in the liver or right kidney.

Joensuu et al. N Engl J Med. 2001. 5;344(14):1052-6.

Response data for Imatinib

Dose	CR (%)	PR (%)	SD (%)	PD (%)	NE/unknown (%)
400 mg daily	0-5	40-68.5	13.7-32	12-15.1	2.7-10
300 mg BID	2.7	64.9	17.6	8.1	6.8
400 mg BID	3-6	42-48	22-32	10-9	5-15
500 mg BID	0	57	29	14	0

van Oosterom A et al. Lancet 2001 and Eur J Cancer, 2002. Demetri G et al. NEJM, 2002. Verweij J et al. Eur J Cancer 2003 and Lancet, 2004. Blanke CD et al. JCO, 2008.

Functional Resistance: Phase III data

KIT mutants			PDGFRA	Wild type	Total		
Response	Exon 9	Exon 11	Exon 13	Exon 17	mutants		
CR	3	16	0	0	0	0	19
	5.17%	6.45%	-	-	-	-	5.04%
PR	17	152	4	2	3	12	190
	29.31%	61.29%	66.67%	66.67%	30.00%	23.08%	50.40%
NC	27	63	2	1	3	26	122
	46.55%	25.40%	33.33%	33.33%	30.00%	50.00%	32.36%
PD	10	8	0	0	4	10	32
	17.24%	3.23%	-	-	40.00%	19.23%	8.49%
Uneval.	1	9	0	0	0	4	14
	1.72%	3.63%	-	-	-	7.69%	3.71%
Total	58	248	6	3	10	52	377

High Dose Imatinib improves PFS for Exon 9

Debiec-Rychter et al. Eur J Cancer. 2006

Secondary Resistance: Clonal Evolution

Response in GIST followed by SECONDARY resistance

Sunitinib: Multi-targeted Receptor Tyrosine Kinase Inhibitor

*Receptor phosphorylation

Mendel DB, et al. Clin Cancer Res 2003;9:327–337 Karam MW et al. Nat Biotechnol 2008; 26: 127–132

1 nM 10 nM

10 µM

Sunitinib Improves PFS & OS Compared to Placebo

Demetri GD, et al. Lancet. 2006.

Sunitinib Phase I/II: OS based on 1° Mutation

Maki R et al Proc Am Soc Clin Oncol 2005, A9011

Effect of secondary exon 11 Mutations

Heinrich et al. J Clin Oncol. 2006

Regorafenib (BAY 73-4506)

Regorafenib

Biochemical activity

	IC ₅₀ (nmol/l)
KIT	7
VEGFR-1	13
Murine VEGFR-2	4
PDGFR-β	22
RET	1.5
B-RAF	28
FGFR1	202

GRID Study: Progression-Free Survival

Regorafenib significantly improved PFS vs placebo (p<0.0001); primary endpoint met

Demetri et al. ASCO 2012

Benefit of Regorafenib based upon Primary Mutation

Progression-free survival (PFS)				
Mutation status	Placebo (N=15) median months	Regorafenib (N=51) median months		
KIT exon 11 mutation	1.1	<u>5.6</u>		
KIT exon 9 mutation	0.9	<u>5.4</u>		

Phase II study of Regorafenib	Response %		PFS (median months)
SDH-deficient tumors (N=6)	PR: 33.3	SD: 66.7	10

Demetri et al. ASCO 2012 Ben-Ami et al. Annals of Oncology 2016

KIT Mutation Site and Drug Sensitivity

Summary

	Prevalence ^{7,8}		
Resistance mutation	Primary	Secondary	
PDGFRα D842V	~5–6%	Rare	
KIT exon 17/18	~1%	2L ~23% ≥3L ~90%	
KIT exon 13	N/A	2L ~40%	

Primary and secondary mutations cause therapeutic resistance Approved agents are ineffective against PDGFRα D842V

NEW APPROACHES

Avapritinib (BLU-285): potent against KIT/PDGFR α GIST mutants

BLU-285 Phase 1 study

Key objectives

- Part 1: Maximal tolerated dose, safety, pharmacokinetics, ctDNA analyses, anti-tumor activity
- Part 2: response rate, duration of response, safety

- 3+3 design with enrichment
- Dose levels: 30, 60, 90, 135, 200, 300, 400 and 600 mg daily
- MTD determined to be 400 mg daily

PDGFR α D842V-mutant GIST (n=50)

Unresectable GIST after imatinib and ≥1 other TKI (n=50)

- Starting dose: 300 mg daily
- If treatment tolerated for 2 cycles, dose escalation to 400 mg daily allowed at the discretion of the treating MD

Baseline patient characteristics

Parameter	All patients, N=72		
Age (years), median (range)	61 (25–85)		
	n (%)		
GIST subtype KIT mutant PDGFRα mutant	40 32	(56) (44)	
Metastatic disease	69 (96)		
Largest target lesion size (cm) ≤5 >5–≤10 >10	18 25 29	(25) (35) (40)	
No. prior kinase inhibitors Median (range) ≥3 Prior regorafenib	<u>PDGFRα</u> 1.5 (0–6) 10 (31) 8 (25)	<u>KIT</u> 4 (2–11) 36 (90) 34 (85)	

Data are preliminary and based on a cut off date of 28 April 2017 Heinrich MC et al. ASCO 2017

Response in PDGFRα D842V-mutant GIST

- Ongoing at cycle 5
- Prior imatinib and sunitinib
- Partial response, size decreased by 63%

- Ongoing at cycle 3
- Prior imatinib
- Partial response, size decreased by 85%

Tumor regression across all dose levels in PDGFR α D842-mutant GIST

High response rate and prolonged PFS in PDGFR α D842-mutant GIST

Approved agents are ineffective: ORR ~0%

Months from first dose
Radiographic response in heavily pre-treated KIT-mutant GIST

BLU-285 300 mg (dose escalation)

- Ongoing at cycle 12
- 6 prior TKIs; exon 11, 13, and 18 mutations
- CHOI

BLU-285 400 mg (dose expansion)

- Ongoing at cycle 4
- 5 prior TKIs; 1° exon 11 mutation; ctDNA pending
- CHOI

Heinrich MC et al. ASCO 2017

Dose-dependent tumor reduction across multiple KIT genotypes

**per archival tumor and ctDNA

Best response (N=25)	Choi Criteria n (%)	RECIST 1.1 n (%)
PR	8 (32)	2* (8)
SD	6 (24)	12 (48)
DCR (PR + SD)	14 (56)	14 (56)
PD	11 (44)	11 (44)

Beyond third-line regorafenib there are no approved therapies Imatinib re-treatment in ≥third-line GIST³ ORR ~0%

Heinrich MC et al. ASCO 2017

Adverse events (AE) associated with BLU-285

Safety population, N=72			
AEs in ≥20% of patients	n (%)		
Nausea	43 (60)		
Fatigue	38 (53)		
Vomiting	30 (42)		
Periorbital edema	26 (36)		
Diarrhea	24 (33)		
Edema peripheral	22 (31)		
Decreased appetite	20 (28)		
Anemia	18 (25)		
Lacrimation increased	17 (24)		
Dizziness	16 (22)		

Sever toxicities thought to be treatment-related: Fatigue [8%] Hypophosphatemia [6%] Anemia [4%] Nausea, vomiting, hyperbilirubinemia [3% each]) DLT in 2 patients at 600 mg: 1 G2 hyperbilirubinemia; 1 G2 rash, hypertension, memory impairment

Cognitive effects: includes issues with concentration, memory, mood changes Recommendations for dose interruption and consideration of dose reduction

Heinrich MC et al. ASCO 2017 Heinrich MC et al. CTOS 2018

Voyager: Study of Avapritinib vs Regorafenib in Patients With Locally Advanced Unresectable or Metastatic GIST

- Previoulsy treated with imatinib and 1 or 2 other TKI's
- Documented KIT/ PDGFRA mutation

Study endpoints: PFS based on independent radiology assessment Secondary endpoints: Response rate, Overall Survival, Quality of Life, Time to tumor progression, Safety profile.

Current Status

 Blueprint filed a New Drug Application on 6/14/19 with U.S. Food and Drug Administration for avapritinib for the treatment of adult patients with PDGFRA Exon 18 mutant gastrointestinal stromal tumors (GIST), regardless of prior therapy, and fourth-line GIST.

Current Status

 Plans for trial in the second line setting compared with sunitinib

Also establishing a compassionate use program at a variety of centers nation wide.

ARO-002: Crenolanib in D842V GIST

31% Overall Clinical Benefit

5/16 (31%) of patients with D842V mutated GIST derived clinical benefit from crenolanib treatment.

- 2 (13%) patients achieved a partial response.
- 3 (19%) patients achieved stable disease.

Overall Response Rate

Evaluable Patients (N=16*)				
Response	# of Patients	Percentage (%)		
PR	2	13%		
Stable Disease	3	19%		
Overall clinical benefit (CR+PR+SD)	5	31%		

*Non-evaluable patients included:

- 3 patients off study prior to receiving 1 full cycle and
- 1 did not have recurrent GIST (aggressive fibromatosis).

PR after 4 cycles of Crenolanib

Patient case: 62 year old female

Patient achieved a partial remission at 140 mg BID

von Mehren et al., Proc. ASCO: 2016. abstract 11010

Current Status

 A Randomized, Double-Blind, Placebo-Controlled, Multicenter, Phase III Trial of Crenolanib in Subjects with Advanced or Metastatic Gastrointestinal Stromal Tumors with a D842V Mutation in the PDGFRA Gene

Repretinib (DCC-2618) background

- Novel mechanism of action
- Preclinical broad range activity against GIST relevant KIT and PDGFRA primary and secondary mutations
- Also has activity against FLT-3, PDGFRB, KDR, TIE2 and FMS

Repretinib (DCC2618): Mechanism of Action

Type II switch control kinase inhibitor of KIT and PDGFR α

DCC-2618 – Phase 1 Study Design and Methods

Part 1: Dose Escalation

- Key Objectives: MTD, recommended Phase 2 dose (RP2D), safety, tolerability, pharmacokinetics and anti-tumor activity (NCT# 02571036)
- Design: 3+3 design for Patients with advanced refractory cancers (KIT/PDGFRα mutated) with a focus on GIST
- Dose Levels tested: 20, 30, 50, 100, 150, and 200 mg BID; and 100, 150 and 250 mg QD - IPDE⁽¹⁾ to 150mg BID permitted
- CT scans every 2 cycles
- ECOG 0-2; adequate end organ function
- MTD: not determined

Part 2: Dose Expansion @ 150 mg QD (RP2D)

- Various cohorts :
 - 3 GIST by line of therapy (2nd-3rd, 4th,
 - > 4th line)
- Dose escalation n to 150mg BID permitted at RECIST progression

DCC-2618: PFS for doses ≥100 mg/d compared to <100 mg/d

•DCC-2618 is a potent pan-KIT and PDGFR α kinase switch control inhibitor active across a broad range of mutations

In non-clinical analyses, DCC-2618 showed activity against all initiation and resistance mutations tested

During the escalation stage of the First-In-Human Study, 150 mg QD was selected as the recommended dose for the Phase 1 expansion stage (NCT02571036)

Janku et al. ESMO, 2017

Waterfall Plot of KIT/PDGFRA GIST Patients, N=37

Janku et al. ESMO, 2017

cfDNA Pharmacodynamic Biomarker Demonstrates pan–KIT Activity (Best Response, N=19)

Enrolled patient population reveals broad range of KIT mutations

DCC-2618 leads to reductions in MAF in cfDNA across all exons associated with resistance

Treatment decisions were made based on disease control and not on changes in MAF

*Patient in first dose cohort, *Patient represented with mixed histology

Janku et al. ESMO, 2017

	2 nd Line (n=38)	3 rd Line (n=29)	≥ 4 th Line (n=111) ⁴	Total (n=178)	
Age Median (min, max)	60 (32, 80)	64 (48, 82)	60 (27, 87)	61 (27, 87)	
ECOG PS 0-1	38 (100%)	29 (100%)	108 (97%)	175 (98%)	
ECOG PS 2	0 (0%)	0 (0%)	3 (3%)	3 (2%)	
Primary Mutation ¹ n (%)					
KIT Exon 9	4 (11%)	8 (28%)	22 (20%)	34 (19%)	
KIT Exon 11	31 (82%)	20 (69%)	71 (64%)	122 (69%)	
Other KIT ²	0 (0%)	1 (3%)	12 (11%) ³	13 (7%) ³	
PDGFRα	3 (8%)	0 (%)	6 (5%)	9 (5%)	
Pts at RP2D (150 mg QD)	32 (84%)	27 (93%)	83 (75%)	142 (80%)	

Notes: (1) Primary mutation per local assessment; (2) KIT exon 13 (4), KIT exon 17 (5), not done (3); (3) Includes one SDH deficient patient; (4) Mean # is 4.63 (range 4-7).

Line of Therapy	Objective Response Rate ⁽¹⁾	Disease Control Rate @ 3 Months	Median Progression Free Survival (mPFS)	Censored Patients for mPFS	Median Treatment Duration ⁽⁴⁾
2 nd Line (n=38)	18% ⁽²⁾ (7/38)	79%	42 weeks (24, NE)	58%	48 weeks (31, NE)
3 rd Line (n=29)	24% (7/29)	83%	40 weeks (24, NE)	52%	NR (36, NE)
≥4 th Line (n=111)	9% (10/106) ⁽³⁾	66%	24 weeks (16, 30)	35%	28 weeks (22, 47)
2nd & 3rd Line (n=67)	21% ⁽²⁾ (14/67)	81%	40 weeks (24, NE)	55%	52 weeks (36, NE)

<u>Notes</u>: (1) Includes 9 unconfirmed responses in 2nd line (n=1), 3rd line (n=3) and \geq 4th line (n=5); (2) Does not reflect 1 PR reported after cut off date; (3) Excludes 5 patients due to due to missing data at the time of data cut off (n=2), lack of first tumor assessment (n=1), withdrawal of consent prior to first assessment (n=1) and unrelated death at C1D4 prior to first assessment (n=1); (4) Includes 46 patients who elected for intra-patient dose escalation.

mPFS by Line of Therapy for ≥100 mg/d DCC-2618 (n=178)

Lines	Ν	mPFS	Number Censored	Active Patients
2	38	42 weeks	22 (58%)	61%
3	29	40 weeks	15 (52%)	59%
4+	111	24 weeks	40 (36%)	44%

- DCC-2618 demonstrated prolonged progression free survival in a meaningful subset of patients across all lines of treatment
- Following progression, 63% (n=29) and 28% (n=13) of patients stayed on study for >8 and >16 weeks, respectively

Good Tolerability Allowed for Prolonged Treatment

Notes: (1) Includes 4 unconfirmed responses in 2nd line (n=1) and 3rd line (n=3); (2) Does not reflect 1 PR after cut off date; (3) Includes 14 patients who elected for intra-patient dose escalation.

<u>Notes</u>: (1) Includes unconfirmed responses in 2^{nd} line (n=1) and 3^{rd} line (n=3).

DCC-2618 – TEAE in >10 % of GIST Patients at >100 mg/d

Out of 178 patients treated with DCC-2618 at <a>100 mg/ d

- 24 (14%) experienced dose reductions due to TEAE
- 19 (11%) experienced treatment discontinuations due to TEAE
- Clinically asymptomatic lipase elevations most frequent G3 TEAE

<u>Notes</u>: (1) Treatment Emergent Adverse Events; (2) Palmar-plantar erythrodysaesthesia syndrome was reported in 19 patients.

	Grade 1-2	Grade 3-4	Grade 1-4 Total
Preferred Term	(n=178)	(n=178)	(n=178)
Alopecia	89 (50%)	0 (0%)	89 (50%)
Myalgia	79 (44%)	0 (0%)	79 (44%)
Fatigue	74 (42%)	2 (1%)	76 (43%)
Constipation	60 (34%)	0 (0%)	60 (34%)
Hand-Foot Skin Reaction ²	56 (32%)	1 (1%)	57 (32%)
Nausea	53 (30%)	0 (0%)	53 (30%)
Decreased appetite	47 (26%)	2 (1%)	49 (28%)
Weight decreased	43 (24%)	0 (0%)	43 (24%)
Abdominal pain	33 (19%)	8 (5%)	41 (23%)
Diarrhea	38 (21%)	3 (2%)	41 (23%)
Lipase increased	21 (12%)	20 (11%)	41 (23%)
Vomiting	32 (18%)	1 (1%)	33 (19%)
Arthralgia	32 (18%)	0 (0%)	32 (18%)
Hypertension	22 (12%)	10 (6%)	32 (18%)
Dry skin	31 (17%)	0 (0%)	31 (17%)
Rash	31 (17%)	0 (0%)	31 (17%)
Muscle spasms	30 (17%)	0 (0%)	30 (17%)
Anemia	14 (8%)	13 (7%)	27 (15%)
Dyspnea	25 (14%)	2 (1%)	27 (15%)
Cough	26 (15%)	0 (0%)	26 (15%)
Headache	25 (14%)	0 (0%)	25 (14%)
Dizziness	23 (13%)	0 (0%)	23 (13%)
Back pain	20 (11%)	2 (1%)	22 (12%)
Blood bilirubin increased	15 (8%)	6 (3%)	21 (12%)
Pain in extremity	21 (12%)	0 (0%)	21 (12%)
Dysgeusia	18 (10%)	0 (0%)	18 (10%)
Hypomagnesaemia	18 (10%)	0 (0%)	18 (10%)
Pruritus	18 (10%)	0 (0%)	18 (10%)

Invictus Study Design

Press Release 8/13/19: Invictus Study Results

Outcome	Placebo	Ripretinib
Progression Free Survival	4.1 weeks	27.6 weeks
Change in risk of disease progression or death		Decreased by 85% (HR of 0.15, p<0.0001)
Overall Response Rate	0.0%	9.4% (p-value=0.0504)
Overall Survival	6.6 months	15.1 months (HR = 0.36, nominal p-value=0.0004)
Grade 3 or 4 treatment- emergent adverse events	44%	49%

Based on the **positive INVICTUS data**, Deciphera expects to submit a **New Drug Application** to the U.S. Food and Drug Administration for ripretinib for the treatment of patients with advanced GIST who have received prior treatment with imatinib, sunitinib and regorafenib in **the first quarter of 2020**.

Intrigue: A Phase 3, Interventional, Randomized, Multicenter, Open-Label Study of DCC-2618 vs Sunitinib in Patients with Advanced Gastrointestinal Stromal Tumors after Treatment with Imatinib

- Progression on imatinib
- Documented KIT/ PDGFRA mutation

Study endpoints: PFS based on independent radiology assessment Secondary endpoints: Response rate (RECIST and CHOI), Overall Survival, Quality of Life, Time to tumor progression, Safety profile.

Phase 1/2 trial of Larotrectonib

- Larotrectonib is an inhibitor of neurotrophic receptor tyrosine kinase proteins.
- Fusions with one of the 3 NTRK proteins is found in a diversity of tumors.
- Patients without response were found to not have NTRK fusions or have mutations affecting the kinase domain

Drilon A, Laetsch TW, Kummar S, et al. N Engl J Med 2018; 378(8):731-739.

Future Directions

- Greater use of mutational testing for selection of therapy
 - How will we incorporate new agents
 - Therapies for NF-1 and SDH deficient GIST are needed
- Evaluation of combination therapies
- Evaluation of immunotherapy: checkpoint inhibitor therapies as well as cellular therapies

Future Directions

 Enhanced methods of assessing for resistance clones

Richardson AL, Iglehart JD. Clin Cancer Res 18: 3209–3211, 2012

Thank you for being able to Participate!

Phase 2 Study Design

Pediatric WT Eligibility Criteria:

 Diagnosis ≤18 years of age or diagnosis of Carney Triad or Carney-Stratakis
Dyad
Progressed on or intolerant to sunitinib

N=40

WT= negative for mutations in KIT, PDGFRA and BRAF

Adult WT Eligibility Criteria:

- Diagnosis >18 years of age and no diagnosis of Carney Triad or Carney-Stratakis Dyad
- Progressed on or intolerant to imatinib

Linsitinib (150 mg PO BID days 1-28, cycles repeated every 28 days in the absence of disease progression or unacceptable toxicity)

Primary end point: CR and PR Secondary end points: SD ≥9 months, PFS, OS, time to progression, metabolic responses

Response Data

RECIST 1.1 Response	N (20)	Total (%)
CR/PR	0	0%
SD	17	85%
CR/PR/SD <u>></u> 9 months	8	40%
PD	2	10%
NA	1	5%

Best Radiographic Response

On study for 9 months or longer

PFS and OS

PFS, 9 Month Estimate: 55% 14/20 Events

OS, 9 Month Estimate: 80% 6/20 Events

Immunotherapy trials

- Nivolumab with or without Ipilumimab in Treating Patients with Metastatic Sarcoma that cannot be removed by Surgery (NCT02500797)
- Combination of MK3475 and Metronomic Cyclophosphamide in Patients with Advanced Sarcoma: Multicenter Phase II trial (PEMBROSARC), (NCT02406781)
- A Phase II study of Nivolumab plus Ipilumimab in Non-Resectable Sarcomas and Endometrial Carcinoma (NCT02982486)

Clinical Trials in "Wild Type GIST"

Vandetanib

• No responses

Guanecitadine

• Ongoing at the NCI

Temazolamide

• To be activated soon
Ripretinib (DCC-2816) Mechanism of Action

Switch Control Inhibitors provide micropockets to attract Switches

 Role reversal: Inhibitor functions as "pocket", stabilizing the Ligand in the OFF state Switch Control Inhibitors compete with Switch for the Switch pocket

T I antagonist

Push

- Eject/compete with Switch Ligand for Pocket
- Classical ligand antagonist concept

Think of this as a "Push-Pull" mechanism for inhibiting kinases